首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   14篇
  国内免费   1篇
  2021年   5篇
  2020年   1篇
  2019年   4篇
  2018年   4篇
  2017年   3篇
  2016年   5篇
  2015年   8篇
  2013年   14篇
  2012年   4篇
  2011年   2篇
  2010年   3篇
  2009年   8篇
  2008年   12篇
  2007年   3篇
  2006年   7篇
  2005年   4篇
  2004年   9篇
  2003年   6篇
  2002年   4篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1998年   7篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   5篇
  1991年   4篇
  1988年   3篇
  1987年   3篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
排序方式: 共有151条查询结果,搜索用时 156 毫秒
1.
1. Ant–plant mutualisms have been the focus of considerable empirical research, but few studies have investigated how introduced ants affect these interactions. Using 2 years of survey data, this study examines how the introduced Argentine ant [Linepithema humile (Mayr)] differs from native ants with respect to its ability to protect the extrafloral nectary‐bearing coast barrel cactus (Ferocactus viridescens) in Southern California. 2. Eighteen native ant species visited cacti in uninvaded areas, but cacti in invaded areas were primarily visited by the Argentine ant. The main herbivore of the coast barrel cactus present at the study sites is a leaf‐footed bug (Narnia wilsoni). 3. Herbivore presence (the fraction of surveys in which leaf‐footed bugs were present on individual cacti) was negatively related to ant presence (the fraction of surveys in which ants were present on individual cacti). Compared with cacti in uninvaded areas, those in invaded areas were less likely to have herbivores and when they did had them less often. 4. Seed mass was negatively related to herbivore presence, and this relationship did not differ for cacti in invaded areas versus those in uninvaded areas. 5. Although the Argentine ant might provide superior protection from herbivores, invasion‐induced reductions in ant mutualist diversity could potentially compromise plant reproduction. The cumulative number of ant species on individual cacti over time was lower in invaded areas and was associated with a shortened seasonal duration of ant protection and reduced seed mass. These results support the hypothesis that multiple partners may enhance mutualism benefits.  相似文献   
2.

Background and Aims

Invasive plants can be released from specialist herbivores and encounter novel generalists in their introduced ranges, leading to variation in defence among native and invasive populations. However, few studies have examined how constitutive and induced indirect defences change during plant invasion, especially during the juvenile stage.

Methods

Constitutive extrafloral nectar (EFN) production of native and invasive populations of juvenile tallow tree (Triadica sebifera) were compared, and leaf clipping, and damage by a native specialist (Noctuid) and two native generalist caterpillars (Noctuid and Limacodid) were used to examine inducible EFN production.

Key results

Plants from introduced populations had more leaves producing constitutive EFN than did native populations, but the content of soluble solids of EFN did not differ. Herbivores induced EFN production more than simulated herbivory. The specialist (Noctuid) induced more EFN than either generalist for native populations. The content of soluble solids in EFN was higher (2·1 times), with the specialist vs. the generalists causing the stronger response for native populations, but the specialist response was always comparable with the generalist responses for invasive populations.

Conclusions

These results suggest that constitutive and induced indirect defences are retained in juvenile plants of invasive populations even during plant establishment, perhaps due to generalist herbivory in the introduced range. However, responses specific to a specialist herbivore may be reduced in the introduced range where specialists are absent. This decreased defence may benefit specialist insects that are introduced for classical biological control of invasive plants.  相似文献   
3.

Background and Aims

Plants display a wide range of traits that allow them to use animals for vital tasks. To attract and reward aggressive ants that protect developing leaves and flowers from consumers, many plants bear extrafloral nectaries (EFNs). EFNs are exceptionally diverse in morphology and locations on a plant. In this study the evolution of EFN diversity is explored by focusing on the legume genus Senna, in which EFNs underwent remarkable morphological diversification and occur in over 80 % of the approx. 350 species.

Methods

EFN diversity in location, morphology and plant ontogeny was characterized in wild and cultivated plants, using scanning electron microscopy and microtome sectioning. From these data EFN evolution was reconstructed in a phylogenetic framework comprising 83 Senna species.

Key Results

Two distinct kinds of EFNs exist in two unrelated clades within Senna. ‘Individualized’ EFNs (iEFNs), located on the compound leaves and sometimes at the base of pedicels, display a conspicuous, gland-like nectary structure, are highly diverse in shape and characterize the species-rich EFN clade. Previously overlooked ‘non-individualized’ EFNs (non-iEFNs) embedded within stipules, bracts, and sepals are cryptic and may represent a new synapomorphy for clade II. Leaves bear EFNs consistently throughout plant ontogeny. In one species, however, early seedlings develop iEFNs between the first pair of leaflets, but later leaves produce them at the leaf base. This ontogenetic shift reflects our inferred diversification history of iEFN location: ancestral leaves bore EFNs between the first pair of leaflets, while leaves derived from them bore EFNs either between multiple pairs of leaflets or at the leaf base.

Conclusions

EFNs are more diverse than previously thought. EFN-bearing plant parts provide different opportunities for EFN presentation (i.e. location) and individualization (i.e. morphology), with implications for EFN morphological evolution, EFN–ant protective mutualisms and the evolutionary role of EFNs in plant diversification.  相似文献   
4.

Background and Aims

In complex communities, organisms often form mutualisms with multiple different partners simultaneously. Non-additive effects may emerge among species linked by these positive interactions. Ants commonly participate in mutualisms with both honeydew-producing insects (HPI) and their extrafloral nectary (EFN)-bearing host plants. Consequently, HPI and EFN-bearing plants may experience non-additive benefits or costs when these groups co-occur. The outcomes of these interactions are likely to be influenced by variation in preferences among ants for honeydew vs. nectar. In this study, a test was made for non-additive effects on HPI and EFN-bearing plants resulting from sharing exotic ant guards. Preferences of the dominant exotic ant species for nectar vs. honeydew resources were also examined.

Methods

Ant access, HPI and nectar availability were manipulated on the EFN-bearing shrub, Morinda citrifolia, and ant and HPI abundances, herbivory and plant growth were assessed. Ant-tending behaviours toward HPI across an experimental gradient of nectar availability were also tracked in order to investigate mechanisms underlying ant responses.

Key Results

The dominant ant species, Anoplolepis gracilipes, differed from less invasive ants in response to multiple mutualists, with reductions in plot-wide abundances when nectar was reduced, but no response to HPI reduction. Conversely, at sites where A. gracilipes was absent or rare, abundances of less invasive ants increased when nectar was reduced, but declined when HPI were reduced. Non-additive benefits were found at sites dominated by A. gracilipes, but only for M. citrifolia plants. Responses of HPI at these sites supported predictions of the non-additive cost model. Interestingly, the opposite non-additive patterns emerged at sites dominated by other ants.

Conclusions

It was demonstrated that strong non-additive benefits and costs can both occur when a plant and herbivore share mutualist partners. These findings suggest that broadening the community context of mutualism studies can reveal important non-additive effects and increase understanding of the dynamics of species interactions.  相似文献   
5.
Plant fitness is affected by herbivory, and in moist tropical forests, 70 percent of herbivore damage occurs on young leaves. Thus, to understand the effects of herbivory on tropical plant fitness, it is necessary to understand how tropical young leaves survive the brief, but critical, period of susceptibility. In this study, we surveyed three species of Inga during young leaf expansion. Three classes of toxic secondary metabolites (phenolics, saponins, and tyrosine), extrafloral nectar production, leaf area, and extrafloral nectary area were measured at randomly assigned young leaf sizes. In addition, all defenses were compared for potential trade‐offs during leaf expansion. No trade‐offs among defenses were found, and the concentration of all defenses, except tyrosine, decreased during leaf expansion. We suggest that plants continued to increase phenolic and saponin content, but at a rate that resulted in decreasing concentrations. In contrast, tyrosine content per leaf steadily increased such that a constant concentration was maintained regardless of young leaf size. Nectar production remained constant during leaf expansion, but, because young leaf area increased by tenfold, the investment in extrafloral nectar per leaf area significantly decreased. In addition, nectary area did not change during leaf expansion and therefore the relative size of the nectary significantly decreased during young leaf expansion. These results support the predictions of the optimal defense hypothesis and demonstrate that the youngest leaves have the highest investment in multiple defenses, most likely because they have the highest nitrogen content and are most susceptible to a diversity of herbivores.  相似文献   
6.
Ant–plant mutualisms are useful models for investigating how plant traits mediate interspecific interactions. As plant‐derived resources are essential components of ant diets, plants that offer more nutritious food to ants should be better defended in return, as a result of more aggressive behavior toward natural enemies. We tested this hypothesis in a field experiment by adding artificial nectaries to individuals of the species Vochysia elliptica (Vochysiaceae). Ants were offered one of four liquid foods of different nutritional quality: amino acids, sugar, sugar + amino acids, and water (control). We used live termites (Nasutitermes coxipoensis) as herbivore competitors and observed ant behavior toward them. In 88 hr of observations, we recorded 1,009 interactions with artificial nectaries involving 1,923 individual ants of 26 species. We recorded 381 encounters between ants and termites, of which 38% led to attack. Sixty‐one percent of these attacks led to termite exclusion from the plants. Recruitment and patrolling were highest when ants fed upon nectaries providing sugar + amino acids, the most nutritious food. This increase in recruitment and patrolling led to higher encounter rates between ants and termites, more frequent attacks, and faster and more complete termite removal. Our results are consistent with the hypothesis that plant biotic defense is mediated by resource quality. We highlight the importance of qualitative differences in nectar composition for the outcome of ant–plant interactions. Abstract in Portuguese is available with online material.  相似文献   
7.
Ant‐lycaenid associations range from mutualism to parasitism and the caterpillars of some species of lycaenids are reported to enter ant nests for shelter, diapause, or pupation. The present study aimed to examine the nature of the association between Euchrysops cnejus (Fabricius) (Lepidoptera: Lycaenidae) and Camponotus compressus (Fabricius) (Hymenoptera: Formicidae) worker ants on the extrafloral nectary‐bearing cowpea plant, Vigna unguiculata (L.) Walp. (Fabaceae). The abundance patterns of the ants and the lycaenid caterpillars together with the spatial patrolling patterns of the ants on the plants revealed that ant abundance increased with the occurrence of the lycaenid caterpillars and the ants preferred the lycaenids over the extrafloral nectar. Camponotus compressus worker ants constructed a shelter at the cowpea plant base after interaction with one or more lycaenid caterpillar(s) and tended the caterpillars and pupae till the emergence of the butterfly. The ant‐constructed shelters (ACSs) inhabited by the minor caste workers (13 ± 1.3 ants per ACS), were utilized by the caterpillars to undergo pupation. The ants confined their activities predominantly to tending the pod‐feeding caterpillars and the solitary pupa within each ACS. It appears that the behavior of the tending worker ants is modulated by the lycaenid vulnerable stages.  相似文献   
8.
9.
Background and Aims Ontogenetic changes in anti-herbivore defences are common and result from variation in resource availability and herbivore damage throughout plant development. However, little is known about the simultaneous changes of multiple defences across the entire development of plants, and how such changes affect plant damage in the field. The aim of this study was to assess if changes in the major types of plant resistance and tolerance can explain natural herbivore damage throughout plant ontogeny.Methods An assessment was made of how six defensive traits, including physical, chemical and biotic resistance, simultaneously change across the major transitions of plant development, from seedlings to reproductive stages of Turnera velutina growing in the greenhouse. In addition, an experiment was performed to assess how plant tolerance to artificial damage to leaves changed throughout ontogeny. Finally, leaf damage by herbivores was evaluated in a natural population.Key Results The observed ontogenetic trajectories of all defences were significantly different, sometimes showing opposite directions of change. Whereas trichome density, leaf toughness, extrafloral nectary abundance and nectar production increased, hydrogen cyanide and compensatory responses decreased throughout plant development, from seedlings to reproductive plants. Only water content was higher at the intermediate juvenile ontogenetic stages. Surveys in a natural population over 3 years showed that herbivores consumed more tissue from juvenile plants than from younger seedlings or older reproductive plants. This is consistent with the fact that juvenile plants were the least defended stage.Conclusions The results suggest that defensive trajectories are a mixed result of predictions by the Optimal Defence Theory and the Growth–Differentiation Balance Hypothesis. The study emphasizes the importance of incorporating multiple defences and plant ontogeny into further studies for a more comprehensive understanding of plant defence evolution.  相似文献   
10.
Invasions by non‐native insects can have important ecological impacts, particularly on island ecosystems. However, the factors that promote the success of invaders relative to co‐occurring non‐invasive species remain unresolved. For invasive ants, access to carbohydrate resources via interactions with both extrafloral nectary‐bearing plants and honeydew‐excreting insects may accelerate the invasion process. A first step towards testing this hypothesis is to determine whether invasive ants respond to variation in the availability of carbohydrate resources, and whether this response differs from that of co‐occurring, non‐invasive ants. We investigated the effect of carbohydrate subsidies on the short‐term foraging and hemipteran‐tending behaviours of the invasive ant Anoplolepis gracilipes (Formicidae) and co‐occurring ant species on an extrafloral nectary‐bearing plant by experimentally manipulating carbohydrate levels and tracking ant recruitment. We conducted experiments in 2 years at two sites: one site was invaded by A. gracilipes prior to 2007 and the other became invaded during the course of our study, allowing pre‐ (2007) and post‐invasion (2009) comparisons. Short‐term increases in carbohydrate availability increased the density of A. gracilipes workers on plants by as much as 400% and reduced tending of honeydew‐excreting insects by this species by up to 89%, with similar responses across years. In contrast, ants at the uninvaded site in 2007 showed a weak and non‐significant forager recruitment response. Across all sites, A. gracilipes workers were the only ants that responded to carbohydrate manipulations in 2009. Furthermore, ant–carbohydrate dynamics at a site newly invaded by A. gracilipes quickly diverged from dynamics at uninvaded sites and converged on those of the site with an established invasion. These findings suggest that carbohydrate resources may be particularly important for A. gracilipes invasions, and underscore the importance of species interactions, particularly putative mutualisms, in facilitating exotic species invasions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号